5G 廣播白皮書

社團法人台灣數位電視協會 石佳相 謝光正 中華民國 109 年 05 月 隨著行動通訊技術由 4G 往 5G 的方向邁進,很多類型的應用與內容,如果採取「廣播」(Broadcast)方式,對資源、成本、效率等等的營運改善均很有益。此處的「廣播」不是指無線電台的聲音廣播(Radio),而是指內容的分發與傳輸,採取「廣播」這種方式。

現今使用智慧型手機和平板電腦等行動設備上的專屬應用軟體,即可 以獲得高畫質的電視服務。儘管這些專屬應用軟體,主要是經由行動 寬頻的單播連接進行傳輸,但是大多數這類服務,是獨立於提供連接 網路的行動業者,且各自經營管理。然而這些專屬應用軟體,是各自 連接上網,以實現互動性、個性化、和內容的選擇。

「5G廣播」技術的出現,實現了電視廣播網和寬頻網路的融合,使節目內容與資訊,得以一致的標準格式,傳輸到家用電視機以及行動設備。儘管這仍然是需到 2025 年左右的未來夢想,但近來各國競相拍賣5G 頻譜,已經象徵著新一代行動通訊基礎建設的開始。

5G 廣播的技術術語是"5G Broadcast",是指類似於 DVB-T2 或 ATSC 3.0 的廣播電視訊號,可以經由無線電視傳播網,與 5G 行動通訊蜂巢網路相複合,傳送節目內容與資訊到智慧終端設備。此類 5G 終端設備,需能連接 5G 訊號,並具有接收無線電視廣播的功能。目前已進入開發階段的此類接收設備,包括有手機、車載電視、以及未來的固定電視。

5G 廣播技術的提出,始於 2017 年 6 月發布的 3GPP 第 14 版(3GPP Release-14)中的「增強型電視服務」(Enhanced Television, EnTV)功能,原本旨在滿足分發傳送公共服務媒體(Public Service Media, PSM)內容所需的許多技術要求。這被認為是一項重大成就,是由歐洲

廣電聯盟 EBU 領導的廣播電視產業,與行動通訊產業之間密切合作的成果。

3GPP 第 14 版的 EnTV 之後發展成為 5G 廣播,其新功能主要包括更大的無線電訊號傳播半徑、免費的廣播電視類服務、和音視頻與資訊分發傳送介面的標準化與一致化。這些新功能,旨在將無線電視傳輸網複合行動通訊網路,傳播數位電視節目,增添了使行動通訊網路,能夠以新的和改進的方式,提供廣播電視類服務的功能。藉著 5G 廣播技術,行動通訊業者可以為電視公司和內容供應商,提供更多的功能和控制,電視服務也變得更加互聯、互通、與互動,從而滿足電視公司、節目內容業者、行動通訊業者、和消費者的需求。現在電視台和節目內容供應商,可以藉由 3GPP 的標準化介面,直接提供服務。電視產業也已經為下一個 5G 行動電視的挑戰,做好了準備。

5G 廣播 - 媒體播送網路的美麗新世界

5G 廣播將被視為 5G 時代的主要支柱之一,這項技術可以提供消費者,在行動通訊環境中,更便捷的媒體消費體驗。自從 4G/LTE 以來,這個想法就存在了,但是它最近透過 3GPP 第 14 和 15 版,在新一代5G 系統中,形成 FeMBMS ("Further evolved Multimedia Broadcast Multicast Service"的縮寫)的新發展,而得到了強化。

另外,由行動通訊產業的角度而言,國際行動通訊組織(International Mobile Communications, IMT)制定了 2020 年行動通訊發展的框架和總體目標,其技術稱為 IMT-2020。IMT 針對 2020 年後的通訊願景,提出了超越現有 IMT 架構,相關的應用情境包括:

▶ 增強型行動寬頻通訊(Enhanced Mobile Broadband, eMBB)、

- ➤ 超可靠度和低延遲通訊(Ultra-Reliable and Low Latency Communications, URLLC)、
- ► 巨量多機器型態通訊(massive Machine Type Communications, mMTC)。

在此 5G 三大應用情境中,每個場景均有很多可以用「廣播」方式進行分發與傳送的業務,被業界統稱為 5G 廣播類業務(5G Broadcast-like Services)、5G 廣播群播業務(5G Broadcast Multicast Services)等。如下圖所示,5G 將複合無線電視的廣播網路與行動通訊的蜂巢網路,提供媒體傳播的諸多應用模式。

Optimizing 5G in media distribution - the ideal scenario

3GPP 第 17 版所提之 5G 系统服務要求¹,已經確立靈活的廣播/群播 (FeMBMS)複合式服務,是 5G 系统應具備的基本能力。在未來的 5G 應用服務中,有許多可能借重廣播網路傳輸的應用,例如 4K/8K 超高 畫質視訊、多視角視訊、三維立體視訊、虛擬實境(VR)、擴增實境 (AR)、緊急災難訊息的廣播、以及對大量物聯網終端設備之軟體升級

4

¹ 3GPP TS 22.261: https://www.3gpp.org/ftp/Specs/archive/22 series/22.261/

等等,皆可以採取「廣播」方式進行分發與傳輸。由此可見,「廣播」 將在 5G 時代發揮極為關鍵的效用。

然而,5G 時代將面臨更大量的行動用戶,更高效能的智慧終端,以及 更高容量網路的建置。因此,5G 廣播的發展面向有二:一是 5G 網路 要能提供新興之電視網的廣播與蜂巢網的單播複合式業務;二是讓傳 統的廣播電視媒體更具個性化與互動性。這些 5G 廣播發展的需求與應 用,大致有下列類型:

- 更高品質的音視頻及更高效的訊源編碼,例如沉浸式音視頻、4K/8K超高畫質電視、多頻道/多視角觀賞系統等;
- 無所不在的跨平台內容廣播,例如跨平台節目內容,服務家中的固定終端電視機,與行動環境的智慧型手機與平板電腦等;
- 更大的數據容量及更高密度的數據傳輸,例如部署一個高功率高塔的廣播網路(HPHT)²,來複合蜂巢網路(LPLT),提高內容傳輸效率;
- ▶ 快速移動場景裡的終端移動性,例如由 5G 廣播支持的 eMBB 與 URLLC,可提供 3D AR/VR 運動場景應用。

5G 廣播標準 FeMBMS 沿革

3GPP 從第 9 版開始引入最初的多媒體廣播/群播服務(Multimedia Broadcast Multicast Services, MBMS), 並在 3GPP 第 11 版增強至具有更高速率及更靈活業務模式的演進型多媒體廣播/群播服務(evolved Multimedia Broadcast Multicast Services, eMBMS), 主要是增加了更高解析度的視訊編碼和幀率,還引入了前向糾錯(FEC)技術。

² 複合型 HPHT/LPLT 傳輸網路架構,可參考下一段說明。

但是, eMBMS 在產業化和商業化的進程都非常的慢,截至 2018 年 3 月,全球僅有 5 個行動通訊業者,推出了小規模的 eMBMS 商用服務。

如下圖所示,說明了 3GPP eMBMS 近期的發展。在 2017 年的 3GPP 第 14 版中,eMBMS 又進一步作了一些改良與演進,例如擴大 OFDM 符號的循環字首 CP³長度。因為這些改進是由行動通訊業者自發推動,代表業界的強烈需求,也意味著 eMBMS 的產業化與商業化進程將會加速。

- In March SA2 started a SI on "Architectural enhancements for 5G multicast-broadcast
- services" (TR 23.757)
- There are good chances of NR-Mixed Mode being standardized in Rel-17
- NR-Terrestrial Broadcast will not happen before Rel-18

3GPP eMBMS 發展現況

3GPP 第 14 版仍指 4G,即 LTE。於 2018 年 6 月完成之第 15 版,是第一個 3GPP 版本內含一些 5G 功能,和一個稱為"5G New Radio" (5G-NR)的新無線電介面。版本 15 繼承了版本 14 的所有 LTE eMBMS 功能,但在 5G-NR 中不包含廣播模式。然而,廣播業者和行動通訊業者共同努力,保障了版本 16 中,進一步開發 LTE eMBMS 功能,以满足 3GPP 技術報告 TR 38.9134的 5G 要求。在未來的版本(即版本 17 或更高版本)中,將考慮對 5G 廣播進行進一步的規範性工作。

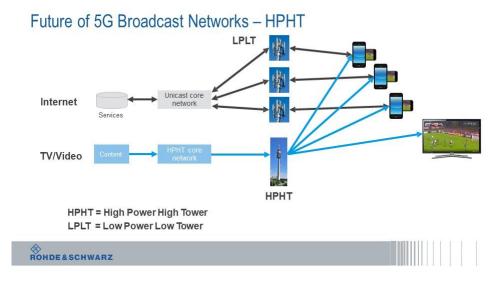
³ 循環字首 Cyclic Prefix,簡稱 CP,與 OFDM 中的 guard interva 相關。

⁴ portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996

目前,歐美產業界已經開始對這種新改進型的 eMBMS 進行現場試驗,而且還把它稱為「FeMBMS」(未來 Further eMBMS),甚至配合 5G-NR,稱作「5G 廣播」(5G Broadcast)。

FeMBMS 承接了下列的技術,包括數位地面傳播技術(例如 DVB-T、DVB-T2、ATSC 3.0、DAB、和 DAB+),以及互聯網廣播電視串流媒體。除了承接傳統數位地面傳播技術的優勢,FeMBMS 尚能夠實現個性化的廣告,且提供節目內容業者,得以根據觀眾的個人喜好,製作和播放廣告與內容。

另外,FeMBMS 可將 100%的傳輸容量,皆用於廣播式服務,並在單 頻網中架構更大傳輸半徑的蜂巢,使站點間距離顯著增加。還允許使 用電視塔台作為基站點,進行大經濟區域的覆蓋。


3GPP 在 FeMBMS 標準,定義了現今在傳播技術中,廣泛使用的視聽傳輸和編碼格式。並首次允許僅下行鏈路模式(Downlink Only Mode,DOM)的高功率高塔(HPHT)應用,建立了單向接收模式,無需回傳路徑,且無需授權認證,以實現無需 SIM 卡就可以進行廣播電視應用操作的功能。

FeMBMS 接收機是基於軟體定義的無線電(Software-Defined Radio,SDR)技術而設計的。將來,此技術可能會沿用到智慧手機、平板電腦、和電視中。意味著將來 FeMBMS 在各地區所根據之數位電視傳播技術,雖有不同,使用 SDR 技術的行動終端設備,亦可以跨區漫遊。

由廣播電視業者看 5G 廣播

對無線電視業者和節目內容業者而言,5G廣播創造了擴展其終端裝置 與市場覆蓋範圍的機會。因為它不需要行動通訊 SIM 卡,也能夠直接 免費接收節目內容。行動通訊業者亦能夠透過向節目內容業者提供服務,複合廣播網路,向其行動通訊用戶,提供高數據速率的複合式節目內容,來強化業務。

如下圖所示,行動通訊業者可以透過 5G 廣播的採用,減輕網路負載。這一新標準的演進,可與蜂巢網路(Low Power Low Tower,LPLT)複合建置一個傳輸半徑超過 60 公里的高功率高塔覆蓋網路(High Power High Tower overlay network,HPHT),來強化現行的行動通訊蜂巢網路架構,從而實現更好和更便捷的媒體傳輸覆蓋。這為城市和鄉村地區,皆提供了一種非常高經濟效益的網路架構。另外,諸如體育賽事之類優質節目內容的消費者,亦將受益於較高的視訊品質,較穩定且低延遲的收訊,和確保即時可用的串流服務。

5G 廣播商業模式

當需要將相同的內容分發到大量設備時,5G廣播不僅適用於行動電視直播,還適用於大規模物聯網。為此,使用行動通訊網的單播(Unicast)模式效率低下,但對於採用廣播(Broadcast)模式來說,卻是

理想的選擇。它可以更加有效的使用 OTA (Over-The-Air),來做大量物聯網軟體的升級,和群組消息的發放。

此外,政府和公共服務單位,正在尋求與民眾溝通的新方式。在公共 安全的領域裡,使用廣播模式向各種設備傳遞即時緊急通知,將更為 有效。

在車聯網領域裡,下一代汽車將支持更高的安全性,和更多樣的自動 駕駛功能。設備到設備的連接,例如 V2X (Vehicle to Everything),將 使車輛能夠有效地與網路及其周圍環境進行通訊。5G 廣播使網路可以 更有效地傳遞即時訊息,例如軟體和交通資訊更新,以及不可忽略的 車內娛樂功能。

5G廣播還可以適應日益個性化的用戶行為,例如在複合有回傳路徑的 5G類高速數據網路,亦可於行動網路環境中,分發與傳輸非同步節目內容,提供類隨選視訊服務。5G廣播之個性化內容(personalized contents)和定址服務(location-based services)的組合,可以實現各種形式的廣告,例如非互聯網情境的精準行銷定向廣告(targeted advertising)。最後,在5G廣播的標準版本中,無需擔心資安問題,匿名接收廣播不會影響資安。

ATSC 3.0 與 3GPP 匯流之第 8 計畫團隊

在北美地區,也有一個將 ATSC 3.0 與 3GPP 匯流的 5G 廣播相應發展。2020 年初,ATSC 董事會成立了一個新的計畫團隊,名為第 8 計畫團隊(Planning Team 8,PT-8),主責廣播核心網路技術(Core Network Technologies for Broadcast)的發展計畫。PT-8 為 ATSC 成員

提供了一個論壇,供他們共同研究未來,研究核心網路技術的潛在價值,並考慮未來的標準工作。

ATSC 3.0 為包括電視和其他服務在內的 IP 數據傳輸,提供了發展潛力,這可能為 ATSC 3.0 產業帶來新的商機,尤其是當這些服務和底層的傳輸網路配置,可以輕鬆地在多個傳輸站點(例如電視塔台)之間,進行協調而形成核心網路。這類電視傳輸網路能夠管控,其覆蓋面可以是區域性的,亦或者是覆蓋整個國家。目的是通過多種方式,實現將內容源,經網路動態配置到一個或多個發射塔。

可以預期,當關聯多個電視塔或單頻網,形成核心網路,與 5G 網路的 匯流融合,將會引致許多業務合作夥伴關係,創造了將內容發送到用 戶設備的新機會。例如可根據位置、用戶識別、或其他預先授權等機 制,作內容分發與傳輸的加值應用。

在現代行動通訊蜂巢網路中,即已存在核心網路管理功能的先例。例如,此類管理功能使蜂巢網路基地台能夠協同工作,從而建立了一項全球服務,可將接收器相互連接,並與外部內容數據源連接。核心網路技術的標準化,可管理核心網路的各個部分,使他們得以無縫的相互操作。

一個核心網路使電視傳輸塔台能夠有效的連接,以形成一個或多個服 務網路,得以滿足眾多用例。例如,向物聯網的數據廣播

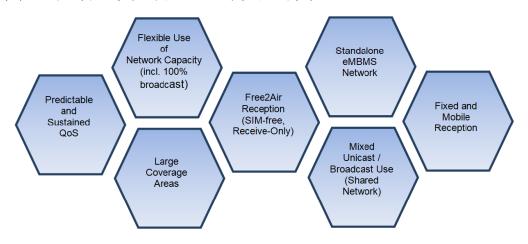
(datacasting),行動通訊網路數據廣播流量的卸載,向車聯網的數據廣播服務等的實現,是重要甚至必要的。同時廣播核心網路,亦可以進一步實現與其他異質網路的複合和相互操作。

PT-8 將研究核心網路概念,並考慮如何將其應用於 ATSC 3.0 數位無線電視廣播,包括確立廣播核心網路技術的特定用例和商業利益。該

小組還研究其他產業標準及對 PT-8 的適用性,分析他們的差距,並找出 ATSC 在該領域可能從事的技術工作,同時考量在規章中可能的新工作指引,PT-8 將向董事會報告這項工作的結果。PT-8 隸屬於 ATSC 董事會,所有 ATSC 成員均可參加。

如果容許 PT-8 在 ATSC 中進行技術工作,則 PT-8 將進一步記錄該工作的原理,並在理想情況下,記錄可能的架構方法和要求,例如與現有網路的相互操作性,以適應特定的用例。基本上,PT-8 並不起草標準或建議方案;它可以起草新工作項目之提案,及/或提出 PT-8 的工作報告。

各國 5G 廣播的實測與研究計畫


2015年,歐洲公共廣電開始對 3GPP 進行一項研究計畫,該研究計畫旨在增強 3GPP 系統,得以支持和容納電視服務。此即所謂的 EnTV 研究計畫,專注於增強 3GPP 系統既有的廣播模式 eMBMS。同時,為了影響標準化過程,歐洲公共廣電開始參與 3GPP。此過程由 EBU 的戰略計劃"Future Distribution" (FD)5協調,設立了"Mobile Technologies and Standards" (MTS)6項目團隊,以進行所需的詳細技術工作。

EBU提出了一系列高階要求,例如無需 SIM 卡,就得以免費使用無線電視服務於智慧手機和平板電腦。使用特定網路的全部容量,獨立運行 eMBMS網路,是另一個非常重要的要素。另外,如何有效利用基礎建構和頻譜資源,並能共享這些資源,以使與不同網路業者的用

⁵ EBU Strategic Programme on Future Distribution, https://tech.ebu.ch/groups/fd

⁶ EBU Project team Mobile Technologies and Standards, https://tech.ebu.ch/groups/mts

户,皆能共同觀賞這些線性廣播電視節目,這也是 EBU 提出的另一高階要求。下圖概述了這些 EBU 提出之要求。

High-level requirements submitted by EBU to 3GPP 下面表列之實驗、測試、和研究項目,摘錄自《EBU TR 044 PSB 4G/5G Broadcast Trials, Tests & Projects (July 2018)»。實際上,這份報告中介紹的實驗和項目,是隨時間變動的現況。可以預見,將來會有更多的實驗和商業網路的建置。報告中介紹的實驗和項目,是基於下列技術之綜合,包括 Rel-14 FeMBMS 和 EnTV,以及 Rel-14 之前的 3GPP 版本的 eMBMS,和一些尚未標準化的技術。

- 2. Trials, Tests and Projects
 - 2.1 Germany: '5G Today'
 - 2.2 United Kingdom: '5G RuralFirst'
 - 2.3 Finland: 'Wireless for Verticals WIVE'
 - 2.4 Finland: '5GTN+ Project'
 - 2.5 Finland: '5G eMBMS Demo'
 - 2.6 Norway: Trial of LTE-B in rural Norway
 - 2.7 Italy: Stand-alone 4G/LTE broadcast network in Aosta Valley
 - 2.8 5G-Xcast project
 - 2.9 Germany: 'IMB5'
 - 2.10 France: 'Tower Overlay'
 - 2.11 Germany: 'Tower Overlay improving mobile network'
 - 2.12 Italy: 'Tower Overlay'

EBU TR 044 PSB 4G/5G Broadcast Trials, Tests & Projects (July 2018)

下表為世界各國近期所作之 5G 廣播實驗,表中並列出各項實驗所進行之業務模式。實驗中的業務模式有:行動即時視訊(Mobile Live Video,MLV)、行動即時視訊和音訊(Mobile Live Video & Audio,MLVA)、公共安全(Public Safety,PS)、OTA 更新(Over-The-Air Updates,OTAU)、汽車(Automotive,AU)、以及其他(Others,O)。

Country	Timeline	Gov. Support	Business Cases	R&S Solution
China	2019-2021 (ext. 2022)	Yes	MLV, OTAU, PS	Yes
Brazil	2019	No	MLV	Yes
Philippines	2019-2020	No	MLV	Yes
South Africa	2020	No	MLV, PS	Yes
Australia	Planned		MLV, OTAU, AU, PS	
Hong Kong	High Interest		MLV, OTAU, PS	
Korea	Planned		MLV, OTAU, PS, AU	Yes
Malaysia	Planned	No	MLV, OTAU, PS, AU	Yes
Germany	2017-2020	Yes	MLV	Yes
Austria	2020-2022	Yes	MLV, OTAU, PS, AU	Yes
France	2018-2021	No	MLV, OTAU, PS, AU	Yes
Italy	2017-2021	No	MLV, OTAU, PS, AU	Yes
Spain	2020	No	MLVA	Yes
US	High Interest			
Finland	2020-2022	No	MLV, OTAU, PS	Yes
Switzerland	High Interest		MLV, OTAU, PS, AU	

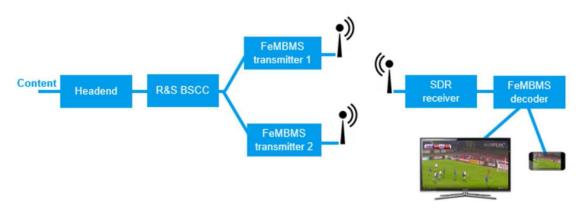
Business cases in trials: MLV: Mobile Live Video, MLVA: Mobile Live Video & Audio, PS: Public Safety, OTAU: OTA Updates, AU: Automotive, O:Others

資料來源:5G Broadcast Worldwide Trials,Rohde&Schwarz,April. 2020

5G TODAY 實驗計畫

目前,作為德國 5G TODAY 巴伐利亞⁷研究項目的一部分,正在德國進行一項重要的歐洲 5G 廣播現場試驗。在廣播技術研究所(Institute for Broadcast Technology,IRT)的領導下,計畫中的合作夥伴 Kathrein和 Rohde & Schwarz,正在進行以 FeMBMS 模式,在 5G 廣播的網路上,進行大規模電視廣播之研究。該項目得到了德國電信(Telefónica Germany)和巴伐利亞州廣播公司(Bayerischer Rundfunk)的支持,後者將在慕尼黑附近提供兩個 HPHT 塔臺站點,進行這項開創性的現場試驗。

5G 廣播的最重要特徵之一:數據傳輸不再完全基於 5G 的 IP 網路,也可能透過 5G 廣播的傳輸通道。5G TODAY 使行動通訊業者可以無限制地將電視或廣播節目,以最高品質傳播給用戶,並能從中獲益。在德國、歐洲以及其他國家,好的廣播電視節目,可以大幅改善生活品質,尤其是對於其基礎設施不良(例如缺少衛星或有線網路),而無法從先進技術中受益的地區。


為了在場測中實施和評估 FeMBMS 實測效果,在 Munich-Ismaning 和 Wendelstein 兩地各安裝一台 Rohde & Schwarz 高性能發射機。這兩個測試發射機將通過頻道 56/57(750-760 MHz)在單頻網(SFN)中運行。測試發射機的頻率由 Telefónica 提供,發射機位置和節目內容由 Bayerischer Rundfunk 提供。Rundfunktechnik 研究所是該項目的協調者,並開發了基於 SDR (Software-Defined Radio) 技術的 FeMBMS 接收機。IRT 還參與網路規劃和測試現場測量。

-

⁷ the Bavarian region of Bayerisches Oberland

Rohde & Schwarz 之 FeMBMS 傳輸方案,使用 5 MHz 和 10 MHz 的 頻寬,解決了 HPHT 網路架構中視頻串流和 IP 數據的 5G 廣播應用。 憑藉這一突破,證明了 5G 廣播 FeMBMS 標準化,在將廣播電視服務,傳送給行動用戶設備和聯網的車輛,以及 IoT 等應用方面的潛力。

如下圖所示,根據 Rohde & Schwarz 在"5G TODAY"研究計畫的項目內,與 Institute for Communications Technology of the Braunschweig Technical University 合作,成功地在實驗室中啟用了全球首個具有FeMBMS 信號的動態單頻網路(Dynamic SFN)8。

IRT 5G TODAY 實驗架構

5G 廣播發展現況與預期效益

簡而言之,5G廣播將使廣播電視產業和行動通訊業者,能夠從頻譜和成本的角度,重新定義效率的新思維,同時探索新的服務品質(Quality of Experience)。

3GPP 的願景,將支持 5G 時代的數位電視廣播,並且為 MBMS (Multimedia Broadcast and Multicast Services)重新定義了一組 5G 要

15

_

https://www.rohde-schwarz.com/pl/about/news-press/all-news/rohde-schwarz-on-the-way-to-5g-broadcast-the-world-s-first-transmission-of-lte-fembms-signals-in-a-dynamic-single-frequency-network-press-release-detailpage 229356-577544.html

求。如今,3GPP版本 14 與 15 滿足了大多數 5G 廣播的要求,並且期待它能滿足所有這些 MBMS的要求⁹,其他更先進的功能,將在第 16 版及以後的版本中,持續的發展。

地面數位電視廣播網路業界,也正在探索未來無線廣電與無線雙向系統的技術,期待與 5G 行動通訊網路複合與匯流,發展基於 5G 廣播的次世代地面數位電視廣播系統標準,共創雙贏的機會:

- 》 將行動通訊的技術,逐步納入到地面雙向數位電視廣播系統之中, 例如 eMBMS/FeMBMS (5G 廣播)技術、SDN (Software-Defined Network,軟體定義網路)技術、NFV (Network Functions Virtualization,網路功能虛擬化)技術、MEC (Multi-access Edge Computing,多接取邊緣運算)技術等。
- ▶ 實現端到端的全 IP 傳輸,有利於與全 IP 的行動寬頻匯流,如 ATSC 3.0 就實現了廣播電視與行動寬頻的匯流,且基於此,正在 研究與 5G 的匯流。
- 研發上行回傳技術/系統(方式不限,可以是帶內、也可以是帶外), 打造雙向化的地面數位電視系統,開發各種雙向化的業務,提高用 戶的使用體驗,最終實現複合式廣播網路與 5G 匯流的新一代聯網 廣播電視服務。
- 隨著技術、業務和終端產品的發展革新,廣播電視業務朝向能夠提供給用戶更強沉浸式與生活化的方向演進。且系統容量將更大,得以傳輸更多套或更高畫質的廣播電視節目,同時提供各家 5G 用戶觀賞。

-

⁹ 例如, 更高的循環字首 Cyclic Prefix (CP>300μs), 以及支持極高的移動速率(250 km/h)

5G 廣播可以促成廣播電視與 5G 行動通訊的匯流,達成產業的優勢互補。例如,5G 的下行頻寬可用地面數位電視網路去增強,以使得 5G 更為節能、降耗、與環保;而廣播電視的上行回傳的個性化應用需求,則可由複合 5G 網路去完成。